Tight Bounds for Online Coloring of Basic Graph Classes
نویسندگان
چکیده
We resolve a number of long-standing open problems in online graph coloring. More specifically, we develop tight lower bounds on the performance of online algorithms for fundamental graph classes. An important contribution is that our bounds also hold for randomized online algorithms, for which hardly any results were known. Technically, we construct lower bounds for chordal graphs. The constructions then allow us to derive results on the performance of randomized online algorithms for the following further graph classes: trees, planar, bipartite, inductive, boundedtreewidth and disk graphs. It shows that the best competitive ratio of both deterministic and randomized online algorithms is Θ(log n), where n is the number of vertices of a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm has a lookahead of size O(n/ log n) or access to a reordering buffer of size n1− , for any 0 < ≤ 1. A consequence of our results is that, for all of the above mentioned graph classes except bipartite graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant factors, among deterministic and randomized online algorithms.
منابع مشابه
More inequalities for Laplacian indices by way of majorization
The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملOn discriminativity of Zagreb indices
Zagreb indices belong to better known and better researched topological indices. We investigate here their ability to discriminate among benzenoid graphs and arrive at some quite unexpected conclusions. Along the way we establish tight (and sometimes sharp) lower and upper bounds on various classes of benzenoids.
متن کاملOn the Maximum Number of Dominating Classes in Graph Coloring
In this paper we investigate the dominating- -color number، of a graph G. That is the maximum number of color classes that are also dominating when G is colored using colors. We show that where is the join of G and H. This result allows us to construct classes of graphs such that and thus provide some information regarding two questions raised in [1] and [2].
متن کاملBounds on circular consecutive choosability
The circular consecutive choosability chcc(G) of a graph G has been recently introduced in [2]. In this paper we prove upper bounds on chcc for series-parallel graphs, planar graphs and k-choosable graphs. Our bounds are tight for classes of series-parallel graphs and k-choosable graphs for k ≥ 3. Then we study the circular consecutive choosability of generalized theta graphs. Lower bounds for ...
متن کامل